{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, NoImplicitPrelude, MagicHash #-}
module Data.List
(
(++)
, head
, last
, tail
, init
, null
, length
, map
, reverse
, intersperse
, intercalate
, transpose
, subsequences
, permutations
, foldl
, foldl'
, foldl1
, foldl1'
, foldr
, foldr1
, concat
, concatMap
, and
, or
, any
, all
, sum
, product
, maximum
, minimum
, scanl
, scanl1
, scanr
, scanr1
, mapAccumL
, mapAccumR
, iterate
, repeat
, replicate
, cycle
, unfoldr
, take
, drop
, splitAt
, takeWhile
, dropWhile
, dropWhileEnd
, span
, break
, stripPrefix
, group
, inits
, tails
, isPrefixOf
, isSuffixOf
, isInfixOf
, elem
, notElem
, lookup
, find
, filter
, partition
, (!!)
, elemIndex
, elemIndices
, findIndex
, findIndices
, zip
, zip3
, zip4, zip5, zip6, zip7
, zipWith
, zipWith3
, zipWith4, zipWith5, zipWith6, zipWith7
, unzip
, unzip3
, unzip4, unzip5, unzip6, unzip7
, lines
, words
, unlines
, unwords
, nub
, delete
, (\\)
, union
, intersect
, sort
, insert
, nubBy
, deleteBy
, deleteFirstsBy
, unionBy
, intersectBy
, groupBy
, sortBy
, insertBy
, maximumBy
, minimumBy
, genericLength
, genericTake
, genericDrop
, genericSplitAt
, genericIndex
, genericReplicate
) where
import Data.Maybe
import Data.Char ( isSpace )
import GHC.Num
import GHC.Real
import GHC.List
import GHC.Base
infix 5 \\
dropWhileEnd :: (a -> Bool) -> [a] -> [a]
dropWhileEnd p = foldr (\x xs -> if p x && null xs then [] else x : xs) []
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
stripPrefix [] ys = Just ys
stripPrefix (x:xs) (y:ys)
| x == y = stripPrefix xs ys
stripPrefix _ _ = Nothing
elemIndex :: Eq a => a -> [a] -> Maybe Int
elemIndex x = findIndex (x==)
elemIndices :: Eq a => a -> [a] -> [Int]
elemIndices x = findIndices (x==)
find :: (a -> Bool) -> [a] -> Maybe a
find p = listToMaybe . filter p
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p = listToMaybe . findIndices p
findIndices :: (a -> Bool) -> [a] -> [Int]
#ifdef USE_REPORT_PRELUDE
findIndices p xs = [ i | (x,i) <- zip xs [0..], p x]
#else
findIndices p ls = loop 0# ls
where
loop _ [] = []
loop n (x:xs) | p x = I# n : loop (n +# 1#) xs
| otherwise = loop (n +# 1#) xs
#endif /* USE_REPORT_PRELUDE */
isPrefixOf :: (Eq a) => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys)= x == y && isPrefixOf xs ys
isSuffixOf :: (Eq a) => [a] -> [a] -> Bool
isSuffixOf x y = reverse x `isPrefixOf` reverse y
isInfixOf :: (Eq a) => [a] -> [a] -> Bool
isInfixOf needle haystack = any (isPrefixOf needle) (tails haystack)
nub :: (Eq a) => [a] -> [a]
#ifdef USE_REPORT_PRELUDE
nub = nubBy (==)
#else
nub l = nub' l []
where
nub' [] _ = []
nub' (x:xs) ls
| x `elem` ls = nub' xs ls
| otherwise = x : nub' xs (x:ls)
#endif
nubBy :: (a -> a -> Bool) -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
nubBy eq [] = []
nubBy eq (x:xs) = x : nubBy eq (filter (\ y -> not (eq x y)) xs)
#else
nubBy eq l = nubBy' l []
where
nubBy' [] _ = []
nubBy' (y:ys) xs
| elem_by eq y xs = nubBy' ys xs
| otherwise = y : nubBy' ys (y:xs)
elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool
elem_by _ _ [] = False
elem_by eq y (x:xs) = y `eq` x || elem_by eq y xs
#endif
delete :: (Eq a) => a -> [a] -> [a]
delete = deleteBy (==)
deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
deleteBy _ _ [] = []
deleteBy eq x (y:ys) = if x `eq` y then ys else y : deleteBy eq x ys
(\\) :: (Eq a) => [a] -> [a] -> [a]
(\\) = foldl (flip delete)
union :: (Eq a) => [a] -> [a] -> [a]
union = unionBy (==)
unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs
intersect :: (Eq a) => [a] -> [a] -> [a]
intersect = intersectBy (==)
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
intersectBy _ [] _ = []
intersectBy _ _ [] = []
intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]
intersperse :: a -> [a] -> [a]
intersperse _ [] = []
intersperse sep (x:xs) = x : prependToAll sep xs
prependToAll :: a -> [a] -> [a]
prependToAll _ [] = []
prependToAll sep (x:xs) = sep : x : prependToAll sep xs
intercalate :: [a] -> [[a]] -> [a]
intercalate xs xss = concat (intersperse xs xss)
transpose :: [[a]] -> [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss) = (x : [h | (h:_) <- xss]) : transpose (xs : [ t | (_:t) <- xss])
partition :: (a -> Bool) -> [a] -> ([a],[a])
{-# INLINE partition #-}
partition p xs = foldr (select p) ([],[]) xs
select :: (a -> Bool) -> a -> ([a], [a]) -> ([a], [a])
select p x ~(ts,fs) | p x = (x:ts,fs)
| otherwise = (ts, x:fs)
mapAccumL :: (acc -> x -> (acc, y))
-> acc
-> [x]
-> (acc, [y])
mapAccumL _ s [] = (s, [])
mapAccumL f s (x:xs) = (s'',y:ys)
where (s', y ) = f s x
(s'',ys) = mapAccumL f s' xs
mapAccumR :: (acc -> x -> (acc, y))
-> acc
-> [x]
-> (acc, [y])
mapAccumR _ s [] = (s, [])
mapAccumR f s (x:xs) = (s'', y:ys)
where (s'',y ) = f s' x
(s', ys) = mapAccumR f s xs
insert :: Ord a => a -> [a] -> [a]
insert e ls = insertBy (compare) e ls
insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
insertBy _ x [] = [x]
insertBy cmp x ys@(y:ys')
= case cmp x y of
GT -> y : insertBy cmp x ys'
_ -> x : ys
maximum :: (Ord a) => [a] -> a
{-# NOINLINE [1] maximum #-}
maximum [] = errorEmptyList "maximum"
maximum xs = foldl1 max xs
{-# RULES
"maximumInt" maximum = (strictMaximum :: [Int] -> Int);
"maximumInteger" maximum = (strictMaximum :: [Integer] -> Integer)
#-}
strictMaximum :: (Ord a) => [a] -> a
strictMaximum [] = errorEmptyList "maximum"
strictMaximum xs = foldl1' max xs
minimum :: (Ord a) => [a] -> a
{-# NOINLINE [1] minimum #-}
minimum [] = errorEmptyList "minimum"
minimum xs = foldl1 min xs
{-# RULES
"minimumInt" minimum = (strictMinimum :: [Int] -> Int);
"minimumInteger" minimum = (strictMinimum :: [Integer] -> Integer)
#-}
strictMinimum :: (Ord a) => [a] -> a
strictMinimum [] = errorEmptyList "minimum"
strictMinimum xs = foldl1' min xs
maximumBy :: (a -> a -> Ordering) -> [a] -> a
maximumBy _ [] = error "List.maximumBy: empty list"
maximumBy cmp xs = foldl1 maxBy xs
where
maxBy x y = case cmp x y of
GT -> x
_ -> y
minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy _ [] = error "List.minimumBy: empty list"
minimumBy cmp xs = foldl1 minBy xs
where
minBy x y = case cmp x y of
GT -> y
_ -> x
genericLength :: (Num i) => [a] -> i
{-# NOINLINE [1] genericLength #-}
genericLength [] = 0
genericLength (_:l) = 1 + genericLength l
{-# RULES
"genericLengthInt" genericLength = (strictGenericLength :: [a] -> Int);
"genericLengthInteger" genericLength = (strictGenericLength :: [a] -> Integer);
#-}
strictGenericLength :: (Num i) => [b] -> i
strictGenericLength l = gl l 0
where
gl [] a = a
gl (_:xs) a = let a' = a + 1 in a' `seq` gl xs a'
genericTake :: (Integral i) => i -> [a] -> [a]
genericTake n _ | n <= 0 = []
genericTake _ [] = []
genericTake n (x:xs) = x : genericTake (n-1) xs
genericDrop :: (Integral i) => i -> [a] -> [a]
genericDrop n xs | n <= 0 = xs
genericDrop _ [] = []
genericDrop n (_:xs) = genericDrop (n-1) xs
genericSplitAt :: (Integral i) => i -> [a] -> ([a], [a])
genericSplitAt n xs | n <= 0 = ([],xs)
genericSplitAt _ [] = ([],[])
genericSplitAt n (x:xs) = (x:xs',xs'') where
(xs',xs'') = genericSplitAt (n-1) xs
genericIndex :: (Integral i) => [a] -> i -> a
genericIndex (x:_) 0 = x
genericIndex (_:xs) n
| n > 0 = genericIndex xs (n-1)
| otherwise = error "List.genericIndex: negative argument."
genericIndex _ _ = error "List.genericIndex: index too large."
genericReplicate :: (Integral i) => i -> a -> [a]
genericReplicate n x = genericTake n (repeat x)
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (,,,)
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (,,,,)
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[(a,b,c,d,e,f)]
zip6 = zipWith6 (,,,,,)
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] ->
[g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (,,,,,,)
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
zipWith5 :: (a->b->c->d->e->f) ->
[a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
zipWith6 :: (a->b->c->d->e->f->g) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
zipWith7 :: (a->b->c->d->e->f->g->h) ->
[a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
deleteFirstsBy eq = foldl (flip (deleteBy eq))
group :: Eq a => [a] -> [[a]]
group = groupBy (==)
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs
inits :: [a] -> [[a]]
inits xs = [] : case xs of
[] -> []
x : xs' -> map (x :) (inits xs')
tails :: [a] -> [[a]]
tails xs = xs : case xs of
[] -> []
_ : xs' -> tails xs'
subsequences :: [a] -> [[a]]
subsequences xs = [] : nonEmptySubsequences xs
nonEmptySubsequences :: [a] -> [[a]]
nonEmptySubsequences [] = []
nonEmptySubsequences (x:xs) = [x] : foldr f [] (nonEmptySubsequences xs)
where f ys r = ys : (x : ys) : r
permutations :: [a] -> [[a]]
permutations xs0 = xs0 : perms xs0 []
where
perms [] _ = []
perms (t:ts) is = foldr interleave (perms ts (t:is)) (permutations is)
where interleave xs r = let (_,zs) = interleave' id xs r in zs
interleave' _ [] r = (ts, r)
interleave' f (y:ys) r = let (us,zs) = interleave' (f . (y:)) ys r
in (y:us, f (t:y:us) : zs)
sort :: (Ord a) => [a] -> [a]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]
#ifdef USE_REPORT_PRELUDE
sort = sortBy compare
sortBy cmp = foldr (insertBy cmp) []
#else
sort = sortBy compare
sortBy cmp = mergeAll . sequences
where
sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]
descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs
descending a as bs = (a:as): sequences bs
ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs
ascending a as bs = as [a]: sequences bs
mergeAll [x] = x
mergeAll xs = mergeAll (mergePairs xs)
mergePairs (a:b:xs) = merge a b: mergePairs xs
mergePairs xs = xs
merge as@(a:as') bs@(b:bs')
| a `cmp` b == GT = b:merge as bs'
| otherwise = a:merge as' bs
merge [] bs = bs
merge as [] = as
#endif /* USE_REPORT_PRELUDE */
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
unfoldr f b =
case f b of
Just (a,new_b) -> a : unfoldr f new_b
Nothing -> []
foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f z0 xs0 = lgo z0 xs0
where lgo z [] = z
lgo z (x:xs) = let z' = f z x in z' `seq` lgo z' xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = errorEmptyList "foldl1"
foldl1' :: (a -> a -> a) -> [a] -> a
foldl1' f (x:xs) = foldl' f x xs
foldl1' _ [] = errorEmptyList "foldl1'"
{-# SPECIALISE sum :: [Int] -> Int #-}
{-# SPECIALISE sum :: [Integer] -> Integer #-}
{-# SPECIALISE product :: [Int] -> Int #-}
{-# SPECIALISE product :: [Integer] -> Integer #-}
sum :: (Num a) => [a] -> a
product :: (Num a) => [a] -> a
#ifdef USE_REPORT_PRELUDE
sum = foldl (+) 0
product = foldl (*) 1
#else
sum l = sum' l 0
where
sum' [] a = a
sum' (x:xs) a = sum' xs (a+x)
product l = prod l 1
where
prod [] a = a
prod (x:xs) a = prod xs (a*x)
#endif
lines :: String -> [String]
lines "" = []
lines s = cons (case break (== '\n') s of
(l, s') -> (l, case s' of
[] -> []
_:s'' -> lines s''))
where
cons ~(h, t) = h : t
unlines :: [String] -> String
#ifdef USE_REPORT_PRELUDE
unlines = concatMap (++ "\n")
#else
unlines [] = []
unlines (l:ls) = l ++ '\n' : unlines ls
#endif
words :: String -> [String]
words s = case dropWhile isSpace s of
"" -> []
s' -> w : words s''
where (w, s'') =
break isSpace s'
unwords :: [String] -> String
#ifdef USE_REPORT_PRELUDE
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
#else
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ' ' : unwords ws
#endif