module Data.Graph.Inductive.Query.ArtPoint(
ap
) where
import Data.Graph.Inductive.Graph
data DFSTree a = B (a,a,[(a,a)]) [DFSTree a]
deriving (Eq)
data LOWTree a = Brc (a,a,a) [LOWTree a]
deriving (Eq)
getBackEdges :: Node -> [[(Node,Int)]] -> [(Node,Int)]
getBackEdges _ [] = []
getBackEdges v ls = map head (filter (elem (v,0)) (tail ls))
dfsTree :: Graph gr => Int -> Node -> [Node] -> [[(Node,Int)]] ->
gr a b -> ([DFSTree Int],gr a b,Int)
dfsTree n _ [] _ g = ([],g,n)
dfsTree n _ _ _ g | isEmpty g = ([],g,n)
dfsTree n u (v:vs) ls g = case match v g of
(Nothing, g1) -> dfsTree n u vs ls g1
(Just c , g1) -> (B (v,n+1,bck) ts:ts', g3, k)
where bck = getBackEdges v ls
(ts, g2,m) = dfsTree (n+1) v sc ls' g1
(ts',g3,k) = dfsTree m v vs ls g2
ls' = ((v,n+1):sc'):ls
sc' = map (\x->(x,0)) sc
sc = suc' c
minbckEdge :: Int -> [(Node,Int)] -> Int
minbckEdge n [] = n
minbckEdge n bs = min n (minimum (map snd bs))
getLow :: LOWTree Int -> Int
getLow (Brc (_,_,l) _) = l
lowTree :: DFSTree Int -> LOWTree Int
lowTree (B (v,n,[] ) [] ) = Brc (v,n,n) []
lowTree (B (v,n,bcks) [] ) = Brc (v,n,minbckEdge n bcks) []
lowTree (B (v,n,bcks) trs) = Brc (v,n,lowv) ts
where lowv = min (minbckEdge n bcks) lowChild
lowChild = minimum (map getLow ts)
ts = map lowTree trs
getLowTree :: Graph gr => gr a b -> Node -> LOWTree Int
getLowTree g v = lowTree (head dfsf)
where (dfsf, _, _) = dfsTree 0 0 [v] [] g
isap :: LOWTree Int -> Bool
isap (Brc (_,_,_) []) = False
isap (Brc (_,1,_) ts) = length ts > 1
isap (Brc (_,n,_) ts) = length ch >= 1
where ch = filter ( >=n) (map getLow ts)
arp :: LOWTree Int -> [Node]
arp (Brc (v,1,_) ts) | length ts > 1 = v:concatMap arp ts
| otherwise = concatMap arp ts
arp (Brc (v,n,l) ts) | isap (Brc (v,n,l) ts) = v:concatMap arp ts
| otherwise = concatMap arp ts
artpoints :: Graph gr => gr a b -> Node -> [Node]
artpoints g v = arp (getLowTree g v)
ap :: Graph gr => gr a b -> [Node]
ap g = artpoints g v where ((_,v,_,_),_) = matchAny g