{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif
#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE UnboxedTuples #-}
#endif
module Crypto.Number.Basic
( sqrti
, gcde
, gcde_binary
, areEven
) where
#if MIN_VERSION_integer_gmp(0,5,1)
import GHC.Integer.GMP.Internals
#else
import Data.Bits
#endif
sqrti :: Integer -> (Integer, Integer)
sqrti i
| i < 0 = error "cannot compute negative square root"
| i == 0 = (0,0)
| i == 1 = (1,1)
| i == 2 = (1,2)
| otherwise = loop x0
where
nbdigits = length $ show i
x0n = (if even nbdigits then nbdigits - 2 else nbdigits - 1) `div` 2
x0 = if even nbdigits then 2 * 10 ^ x0n else 6 * 10 ^ x0n
loop x = case compare (sq x) i of
LT -> iterUp x
EQ -> (x, x)
GT -> iterDown x
iterUp lb = if sq ub >= i then iter lb ub else iterUp ub
where ub = lb * 2
iterDown ub = if sq lb >= i then iterDown lb else iter lb ub
where lb = ub `div` 2
iter lb ub
| lb == ub = (lb, ub)
| lb+1 == ub = (lb, ub)
| otherwise =
let d = (ub - lb) `div` 2 in
if sq (lb + d) >= i
then iter lb (ub-d)
else iter (lb+d) ub
sq a = a * a
gcde :: Integer -> Integer -> (Integer, Integer, Integer)
#if MIN_VERSION_integer_gmp(0,5,1)
gcde a b = (s, t, g)
where (# g, s #) = gcdExtInteger a b
t = (g - s * a) `div` b
#else
gcde a b = if d < 0 then (-x,-y,-d) else (x,y,d) where
(d, x, y) = f (a,1,0) (b,0,1)
f t (0, _, _) = t
f (a', sa, ta) t@(b', sb, tb) =
let (q, r) = a' `divMod` b' in
f t (r, sa - (q * sb), ta - (q * tb))
#endif
gcde_binary :: Integer -> Integer -> (Integer, Integer, Integer)
#if MIN_VERSION_integer_gmp(0,5,1)
gcde_binary = gcde
#else
gcde_binary a' b'
| b' == 0 = (1,0,a')
| a' >= b' = compute a' b'
| otherwise = (\(x,y,d) -> (y,x,d)) $ compute b' a'
where
getEvenMultiplier !g !x !y
| areEven [x,y] = getEvenMultiplier (g `shiftL` 1) (x `shiftR` 1) (y `shiftR` 1)
| otherwise = (x,y,g)
halfLoop !x !y !u !i !j
| areEven [u,i,j] = halfLoop x y (u `shiftR` 1) (i `shiftR` 1) (j `shiftR` 1)
| even u = halfLoop x y (u `shiftR` 1) ((i + y) `shiftR` 1) ((j - x) `shiftR` 1)
| otherwise = (u, i, j)
compute a b =
let (x,y,g) = getEvenMultiplier 1 a b in
loop g x y x y 1 0 0 1
loop g _ _ 0 !v _ _ !c !d = (c, d, g * v)
loop g x y !u !v !a !b !c !d =
let (u2,a2,b2) = halfLoop x y u a b
(v2,c2,d2) = halfLoop x y v c d
in if u2 >= v2
then loop g x y (u2 - v2) v2 (a2 - c2) (b2 - d2) c2 d2
else loop g x y u2 (v2 - u2) a2 b2 (c2 - a2) (d2 - b2)
#endif
areEven :: [Integer] -> Bool
areEven = and . map even